

 1

A Case Study: Validation of Guidance Control Software Requirements for
Completeness, Consistency and Fault Tolerance

Frederick T. Sheldon, Hye Yeon Kim, and Zhihe Zhou

Washington State University
Pullman, Washington 99164-2752, USA

sheldon@acm.org | hyekim@ieee.org | zzhou@wsu.edu

Abstract
In this paper, we discuss a case study performed for

validating a Natural Language (NL) based software
requirements specification (SRS) in terms of
completeness, consistency, and fault-tolerance. A partial
verification of the Guidance and Control Software (GCS)
Specification is provided as a result of analysis using
three modeling formalisms. Zed was applied first to
detect and remove ambiguity from the GCS partial SRS.
Next, Statecharts and Activity-charts were constructed to
visualize the Zed description and make it executable. The
executable model was used for the specification testing
and faults injection to probe how the system would
perform under normal and abnormal conditions. Finally,
a Stochastic Activity Networks (SANs) model was built to
analyze how fault coverage impacts the overall
performability of the system. In this way, the integrity of
the SRS was assessed. We discuss the significance of this
approach and propose approaches for improving
performability/fault tolerance.

1. Introduction

High assurance systems demand rigorously
engineered software. A failure in the control software of
mission critical systems can be disastrous. It is difficult
to create a reliable requirements specification because
such control software tends to be highly complex.
Moreover, it is well known that the majority of software
errors are introduced during the requirements phase [1,
2]. To avoid problems in the latter development phases
and reduce life-cycle costs, it is crucial to ensure that the
specification be reliable. By reliable, we mean: (1) is the
specification correct, complete, and consistent? (2) Can
the specification be trusted to the extent that design and
implementation can commence while minimizing the
risk of costly errors? (3) How can we analyze the
specification to prevent the propagation of errors into the
downstream activities?

The Guidance and Control Software (GCS)

principally provides control during the terminal phase of
descent for the Viking Mars Lander. The lander has three
accelerometers, one Doppler radar with four beams, one
altimeter radar, two temperature sensors, three
gyroscopes, three pairs of roll engines, three axial trust
engines, one parachute release actuator, and a touch
down sensor. After initialization, the GCS starts sensing
the vehicle altitude. When a predefined engine ignition
altitude is sensed, the GCS begins guidance and control
of the vehicle. The purpose of this software is to
maintain the vehicle along a predetermined velocity-
altitude contour. Descent continues along this contour
until a predefined engine shut off altitude is reached or
touchdown is sensed. The ARSP (Altimeter Radar
Sensor Processing) is a sub-module of the GCS. This
functional unit reads the altimeter counter provided by
the altimeter radar sensor and converts the data into a
measure of distance to the surface of Mars. If uncovered
failures occur, the lander could fail to land on the surface
even though it had successfully traveled the long
distance from Earth to Mars. Therefore, assessing the
SRS for the reliability and performability is required for
the mission critical software [3, 4].

1.1. Related Works

There have been numerous studies conducted that
combine a Zed representation with some formal method
or design notation. A hybrid formal method, called PZ-
nets that combine Petri nets and Zed notations, was
developed [5]. The benefits provide a unified formal
model for specifying the overall system structure, control
flow, data types and functionality. Sequential, concurrent
and distributed systems are modeled using a valuable set
of complementary compositional analysis techniques.
This approach has been successfully applied to model
some known high assurance and concurrent systems.
However, the lack of modular and hierarchical facilities
precludes this approach to be applied to large systems.

Bussow and Weber present a mixed method
consisting of Zed notations and Statecharts [6]. Each
method was applied to a separate part of the system. Zed

 2

was used in defining the data structures and
transformations. Statecharts were used in representing
the overall system and showing the reactive behavior.
The Zed notations were type checked with the ESZ type
checker but the Statechart semantics were not fully
formalized. In addition, we reviewed several other case
studies that utilized Zed for concretely defining data
while using Statecharts as a behavioral description and
evaluation method [7-9].

Hierons, Sadeghipour, and Singh present a hybrid
specification language µSZ[10]. The language uses
Statecharts to describe the dynamical system behavior
and Zed to describe the data and data transformations.
Their data abstraction technique uses information
derived from the Zed specifications to produce an
extended finite state machine (EFSM) defined by the
Statecharts. The EFSM poses properties that can be
utilized during test generation. These properties help
solve the problems of setting up the initial state and
checking the final state of a test to assist in test
automation. Both the dynamic behavior specified in
Statecharts and the individual operations are checked
using this method.

Dugan and Trivedi present several different models
for predicting coverage in a fault tolerant system to
illustrate their methods for accurately predicting and
assessing dependability [11]. They classified three error
categories: permanent, intermittent, and transient.
Models used in their study were Markov, semi-Markov,
non-homogeneous Markov, and extended stochastic Petri
Nets. They investigated the sensitivity of the system
reliability to the coverage parameter and the sensitivity
of the coverage parameter to various error handing
strategies.

Sanders and Malhis showed the applicability of
SAN in dependability evaluation [12]. State space
explosion is a common problem when using Markov
models directly for analyzing a realistic design. SANs,
together with reduced base model construction
techniques, can result in tractable Markov models for
many parallel and distributed systems.

In our study, Zed was used to clarify ambiguous
statements found in the SRS. Zed was chosen because it
provides a concrete way to transform requirements into
state-based models using the schematic structuring
facilities. The transformation elucidates assumptions and
provides mechanisms for refining abstract specifications
into concrete ones for clarifying data and functional
definitions. Statecharts were chosen to model the Zed
specifications because a key goal was testability and pre-
development evaluation. A clear distinction of our
approach with other approaches is that we did not
combine Zed and Statecharts together. We translated the
SRS into Zed completely and then translated the Zed
specification into Statecharts. Stochastic Activity

Networks (SANs) were used to assess the dependability
of the software in terms of fault detection and coverage
since it is well suited for performability and
dependability modeling.

1.2. Completeness and Consistency

The completeness of a specification is defined as the
lack of ambiguity from the implementation perspective.
The specification is incomplete if the system behavior is
not specified precisely because the required behavior for
some events or conditions is omitted or is subject to
more than one interpretation [13]. Consistency means
that the specification is free from conflicting
requirements and undesired nondeterminism [14].

1.3. Fault Tolerance

Traditionally, fault-tolerance has referred to building
systems from redundant parallel components [15]. A
fault-tolerant system is a system that has the ability to
respond to unexpected hardware or software failures.
Components in a system interact with each other as well
as the environment. There are many levels of faults may
occur in any component. The undesired operation inside
the component, an error propagated from another
component, or user error (mistake) can cause faults.

Theoretically, no system is absolutely fault free.
There are plenty of catastrophic failures to substantiate
this [16]. The probability of system failure decreases in
accordance with a cautious specification and design
process. However, the more complex the system, the
more difficult it is to achieve high performance and fault
tolerance.

Software is considered as fault-tolerant (robust) if
and only if the software: (1) is able to compute an
acceptable result even if the program itself suffers from
incorrect logic; and (2) whether correct or incorrect, is
able to compute an acceptable result even if the software
itself receives corrupted incoming data during execution.
The key to this definition is to determine what is
"acceptable." For the ARSP module of the GCS, the
“acceptable” result means the distance from the vehicle
to the surface of Mars, computed by the ARSP, should
be accurate enough to result in a successful landing. If
there are deviations, these errors should not cause false
actions in other modules that may lead to catastrophic or
incorrect operation.

1.4. Informal and Formal Specifications

The typical SRS highly depends on natural
language. Natural language based specifications are
often subject to multiple interpretations. Even when
such specifications are developed systematically, it is

 3

difficult to ensure their integrity without some form of
correctness checking. Generally, correctness checking
obligates the use of a mathematically based requirements
specification language (RSL). Such languages are
notoriously difficult to understand, and minimally
require a proficient level of knowledge in discrete
mathematics and/or some formal logic system. This
poses a serious concern to industry because many
different classes of requirements exist. Different
stakeholders typically represent various ways of looking
at the problem. Thus, a multi-perspective analysis is
important, as there is no single correct way to analyze
system requirements [17]. The usefulness of the
requirements specification is diminished by not being
understandable to the diverse set of stakeholders.
Nevertheless, to avoid the confusion caused by
ambiguity, the merits of two different mathematically
based RSLs were investigated.

2. Methods

The sequence of the methods application is as
follows. First, the NL-based GCS specification was
transformed using the Zed notation. Zed Schemas were
abstracted from GCS components. This compositional
process helped to clarify ambiguities. Second, the
Schemas were transformed into Statecharts/Activity-
charts and symbolically executed to assess the model’s
behavior using the GCS-specified mission profile.
Finally, a SAN model was developed to analyze the fault
tolerance of the system. In this section, we provide brief
descriptions of each method that were used in this study.

2.1. Zed

The Zed notation is a mathematical language with a
theory of refinement between abstract data types. In
combination with natural language, it can be used to
produce a formal specification. We may reason about
this specification using the proof techniques of
mathematical logic. We may also refine the
specification, yielding another description that is closer
to executable code [18]. Schema's are the main
structuring mechanism used to create patterns and
objects. The notation is used to model systems in terms
of state. We describe the state of the system and explain
the relationship between ARSP and the state of various
components. The production of such a specification
helps us to understand requirements, clarify intentions,
and construct proofs (i.e., identify assumptions and
explain correctness). These facilities provided by Zed
were useful and essential in clarifying ambiguities and
solidifying our understanding of the requirements.

2.2. Statecharts

Statecharts consist of <S, T, E, V> where S is a set
of states, T is a set of transitions, E is a set of events and
V is a set of variables. States are either BASIC, OR, or
AND states where BASIC states have no sub-states
while OR states do have sub-states that are related to
each other by an exclusive-or relation. Being in an OR
state means being in only one of its sub-states. AND
states have sub-states, called orthogonal components,
that are related by an and relation. Being in an AND
state implies that being in all of its orthogonal
components. Changes among states are represented by a
transition (i.e., event [condition] / action). An event is an
instantaneous occurrence of a stimulus (trigger), a
condition is a predicate that must be satisfied for a
transition to occur and an action may generate other
events or perform computations. Thus, Statecharts =
finite state machines + depth + orthogonality +
broadcast. The depth is achieved by OR states and
orthogonality is achieved by AND states. Broadcast is
used to communicate among states and is achieved by
the action of a transition. In other words, when a
transition is triggered, an action generates an event and
this event is assumed to be globally broadcast [19].

Statecharts (STATEMATE Magnum, a product of i-
Logix, was used for this case study.) provide a natural
way to specify complex reactive systems both in terms of
how objects communicate and collaborate and how they
carry out their own internal behavior. Together Activity-
charts and Statecharts are used to describe the system
functional building blocks, activities and the data that
flows between them. These languages are highly
diagrammatic in nature, constituting full-fledged visual
formalisms, complete with rigorous semantics providing
an intuitive and concrete representation for inspecting
and checking for conflicts [20]. These two formalisms,
Activity-charts and Statecharts, were used to specify our
conceptual system model for symbolic simulation. In
this way, we verified our assumptions, injected faults,
and identified hidden errors constituting inconsistencies
or incompleteness in the specification.

2.3. SANs

Stochastic Activity Networks is an extension of the
Generalized Stochastic Petri Net. In addition to
transitions (called activities) and places, SANs use two
new types of components: Input gates and Output
gates[21]. Input gates are used to connect places with
activities. Each input gate is associated with a predicate
and a function. In order to enable the activity, all
predicates of its input gates must be true and all places,
immediately connected to it, must contain at least one
token. The function of the input gate specifies how to
change the tokens of the places that connect to this input
gate. Output gates are associated with functions. Like

 4

input gate functions, output gate functions also specify
how many tokens are removed from or added to the
places that are connected to the output gate.

When an instantaneous activity is enabled, it can fire
immediately. If it is a timed activity, it can fire after a
time delay determined by the assigned probability
distribution. The firing of an activity results in: (1) all
input gate functions are executed, (2) each immediately-
connected input place has one token removed, (3) all
output gate functions are executed, and 4) each directly-
connected output place has its token incremented.

3. Transformation of the Different
Specifications

We now discuss the transformation from the SRS to
the Statecharts representations via Zed. The Altitude
Radar Sensor Processing (ARSP) module specification
showing inputs, outputs, and subsystem processing
descriptions was chosen for the purpose of our study.

FRAME_COUNTER? : N
AR_ FREQUENCY? : R
AR_COUNTER? : Z
K_ALT_1, K_ALT_2, K_ALT_3, K_ALT_4, K_ALT_NEW: {0,1}
AR_ALTITUDE_1, AR_ALTITUDE_2, AR_ALTITUDE_3, AR_ALTITUDE_4,
AR_ALTITUDE_NEW: R
AR_STATUS_1, AR_STATUS_2, AR_STATUS_3, AR_STATUS_4,
AR_STATUS_NEW: {healthy, failed}

K_ALT: K_ALT_1 x K_ALT_2 x K_ALT_3 x K_ALT_4
AR_STATUS: AR_STATUS_1 x AR_STATUS_2 x AR_STATUS_3 x

AR_STATUS_4

AR_ALTITUDE: AR_ALTITUDE_1 x AR_ALTITUDE_2 x AR_ALTITUDE_3 x
 AR_ALTITUDE_4

AR_COUNTER? e -1..32767
AR_FREQUENCY? e 1..2450000000
FRAME_COUNTER? e 1..2147483647
AR_ALTITUDE_1 e 1..2000 ¶ AR_ALTITUDE_2 e 1..2000 ¶
AR_ALTITUDE_3 e 1..2000 ¶ AR_ALTITUDE_4 e 1..2000 ¶
AR_ALTITUDE_NEW e 1..2000

ARSP_RESOURCE

1

2

3

4
5

6

7

8

9

RUN_PARAMETER

EXTERNAL

ARSP

@INIT

CALCULATE

@ALTIMETER GUIDANCE_STATE

SENSOR_OUTPUT AR_FREQUENCY

AR_COUNTER

FRAME_COUNTER

AR_ALTITUDE

AR_ALTITUDE

AR_STATUS

AR_STATUS

K_ALT

K_ALT

INPUT
AR_ALTITUDE AR_COUNTER
AR_FREQUENCY AR_STATUS
FRAME_COUNTER K_ALT

OUTPUT
AR_ALTITUDE AR_STATUS

K_ALT

PROCESS:
It is only necessary that this functional module

NAME: FRAME_COUNTER
DESCRIPTION: Counter containing the number of the
present frame
USED IN: AECLP, ARSP, CP, GP, TDLRSP
UNITS: none

RANGE: [1, 231-1]
DATA TYPE: Integer*4
ATTRIBUTE: data
DATA STORE LOCATION: EXTERNAL
ACCURACY: N/A

Module Specification Data Dictionary

Zed Specification

Statecharts

NL-Based SRS

Figure 1 Mapping example from NL-based to Statecharts

The SRS provides a data dictionary with variable
definitions, type, units, and a brief description of
variables and functions. This descriptive information is
shown in [22]. We abstracted the NL-based module
specification into Zed preserving variable names,
operations (i.e., functionality), dependency and scope.

Figure 1 provides an example, using the
FRAME_COUNTER input variable that illustrates the
complete translation from Zed to Statecharts. The
FRAME_COUNTER is defined as an integer with range
[1, 1231 −]. In Zed, the FRAME_COUNTER is declared as
a set of natural numbers in the signature part and the
range of the variable is defined in the predicate part
(lower half of the schema). The Statechart representation
of the FRAME_COUNTER variable is presented with the
direction of data transfer from EXTERNAL into the
ARSP Module (see Figure 1 for the details). Its type and
value range are defined in the Statemate data dictionary.

In translating from the NL-based SRS to Zed, four
ambiguously specified requirements were identified. The
first one concerns the rotational direction assumed by the
use of the term “rotate.” Secondly, an undefined third
order polynomial was revealed that is used to estimate
the AR_ALTITUDE value [22]. The third issue (i.e.,
ambiguity) concerns the use of the AR_COUNTER
variable for two different purposes, which imply that it
has two different types. Finally, there is uncertainty
regarding the scope of the AR_COUNTER variable that
brings into question which module should use and/or
modify this variable.

Given these various issues, two scenarios were
considered. The first scenario assumes the
AR_COUNTER is updated within the ARSP module
while the second scenario does not. Both scenarios were
constructed separately and compared to understand how
Zed could be useful in clarifying ambiguity and avoiding
conflicts. Scenario one supposes that the separate
constraints (i.e., one variable with different types)
defined in the SRS should be represented by separate
variables (i.e., Echo and AR_COUNTER). In the SRS,
the sign bit of AR_COUNTER represents whether the
radar echo pulse is received on time. In scenario one, this
condition is split off into the Echo variable while in
scenario two the Echo variable is not introduced. The
Zed specification is considered consistent with the SRS
as long as the newly defined Echo variable does not
cause a side affect outside of the ARSP module (i.e., if
by chance, some other function/module accesses the sign
bit).

Because we have chosen in scenario one to
introduce a new ARSP input variable we must decide
where and how this variable is updated. Accordingly, we
modified the Zed version of the ARSP specification to
account for two separate variables. As a result of
iterative refinements of the Zed specification, we found
that the Echo variable must be treated as an additional
ARSP input because there is no other way to determine if
the radar echo pulse has been received. This in turn
caused the whole specification to be revised to reflect the
principle that mandates decoupling data [17]. Therefore,

 5

the interpretation of scenario one is inconsistent with the
SRS. On the other hand, in scenario two no additional
variables were defined. Only those variables defined in
the SRS were specified and all the requirements
specified in ARSP were covered. Therefore, this
reformulation of the SRS was considered as a complete
and consistent transformation. We chose scenario two
for this reason as the basis from which to build the
Statecharts. In this way, Statemate could be used to
analyze a model that properly conformed to its
requirements which we believed would be useful in
feeding back the results of our assessment (i.e., symbolic
simulation). We also wanted to confirm what we had
seen using Zed using this other type of formalism
namely Statecharts and determined if indeed our
reformulation revealed similar ambiguity. The details of
the Zed specification for scenario two are described in
[22].

4. The Transformation from Zed to
Statecharts

An ARSP project was created within the Statemate
framework. Graphic editors were used to create
Statecharts and Activity-charts. Once the graphical forms
were characterized, state transition conditions and data
items were defined.

INI

[MOD(FRAME_COUNTER, 2)=0]/
AR_ALTITUDE(3):=AR_ALTITUDE(2);
AR_ALTITUDE(2):=AR_ALTITUDE(1);
AR_ALTITUDE(1):=AR_ALTITUDE(0);
AR_STATUS(3):=AR_STATUS(2);
AR_STATUS(2):=AR_STATUS(1);
AR_STATUS(1):=AR_STATUS(0);
K_ALT(3):=K_ALT(2);
K_ALT(2):=K_ALT(1);
K_ALT(1):=K_ALT(0)

[MOD(FRAME_COUNTER, 2)=1]/
st!(CALCULATE)

CURRENT_STATE

KEEP_PREVIOUS_VALUE> CALCULATION

Figure 2 ARSP INI Statechart

These items and/or conditions trigger activities and
state transitions that occur within the Statemate model
based on definitions within the “data dictionary” and/or
the “data bank browser.” The Activity-chart (Statechart
part of Figure 1) and Statecharts (shown in Figure 2, also
refer the [22]) reflect all variables/conditions defined in
our Zed formulation. During simulation, various color
changes help to show the sequence of state changes that
occur to validate the system according to its specified
structure (based on our Schema signatures) and
constraints (based on our Schema predicates). We
changed initial (and current) values and conditions while
at the same time rerunning and/or resuming the
simulation in the process of verifying our assumptions
against the Statechart specification. In this way, we
exercised the Statechart-based model and generated C
code directly from the charts.

 EXTERNAL RUN_PARAMETERS

SENSOR_OUTPUT GUIDANCE_STATE

TDLRSP
.3

GSP
.4

ARSP
.2

ASP
.1

TSP
.5

TDSP
.6

Figure 3 DFD 2.1 SP - Sensor Processing [23]

The ARSP Activity-chart shows the data flow
between the data stores and the ARSP module based on
the information (albeit it does not show which
parameters go where.) The direction of the data flow is
given by Figure 3, which follows from the information
contained in the SRS data dictionary [23].

5. Integrating Fault Tolerance to the
ARSP Specification

The GCS software runs in a harsh environment and
depends on correct operation of the hardware. Cosmic
radiation could cause memory bits to flip, and hardware
sensors might fail. These hardware failures are beyond
the level that GCS software can control, although the
GCS must detect such failures; the actual masking
counter measure would typically be accomplished
through redundancy (i.e., using error correction memory
or shielding the memory from radiation, and providing
backup sensors in case of sensor failure).

As shown in Figure 3, the ARSP is a component of
the sensor processing logic and consequently a
component of the entire GCS software system. Sensor
data are fed into the ARSP to produce a measure of
distance from the vehicle to the surface of Mars. The
value of altitude is the output of ARSP and is further
used by other components to guide the terminal decent of
the vehicle. As long as the output is correct, the ARSP
does not introduce errors to the system.

There are two possible sources of error. One is an
input error, which would cause an incorrect output. The
other case would involve some logical ARSP design
flaw. This type of error would cause correct input data to
produce incorrect output. The goal of fault tolerance in
the ARSP is to detect and cover these errors so that no
error will propagate to other system components.

 A robust specification should specify how to cope
with errors. It is not only important to specify a correct
algorithm but also how to handle errors or exceptions.

An internal error is truly an unexpected error. It not
only depends on a carefully designed specification but
also on its correct implementation. In order to detect and
cover an internal error, the specification can require
different implementations running in parallel. The
outputs of all running implementations are checked. If
there are differences between them, there might be an

 6

internal error. We can further decide which one has an
error and use the correct output. We can also force the
faulty one to shut down or restart.

6. Specification Testing

Now we discuss the results of our validation effort
based on symbolic simulation of the ARSP Statechart
model. In effect, we verified that the ARSP subunit
requirements are complete and consistent by running the
simulation against all of the Activity/Statecharts. The
data used in the simulation is provided in Table 1.

Table 1 ARSP Specification Test Cases

Variable Case 1 Case 2 Case 3 Case 4 Case 5
FRAME_COUNTER 2 2 1 1 3

AR_STATUS DC DC [0, 0, 0, 0] DC [0, 1, 0, 0]
AR_COUNTER -1 19900 -1 20000 -1

 X Event occured, DC Don’t Care.

Table 2 ARSP Outputs from the Simulation

Variable Case 1 Case 2 Case 3 Case 4 Case 5
AR_STATUS KP KP [1, 0, 0, 0] [0, -, -, -] [1, 0, 1, 0]

K_ALT KP KP [1, 1, 1, 1] [1, -, -, -] [0, 1, -, 1]
AR_ALTITUDE KP KP [*, -, -, -] [2000,-,-,-] KP

- Don’t care, KP Keep Previous value, * An estimated value.

Five conditions (Case 1-5) as shown in Table 1
were defined to test the charts we developed. They
represent the way we visualized and were able to
scrutinize the Zed specification. The AR_FREQUENCY
value was fixed at 1,500,000,000 to calculate the value
of AR_ALTITUDE for all test cases. In the material
presented below, we’ll explain how each of the
conditions was evaluated which should help to convince
the reader that the ARSP subunit is significantly complex
(one of six different sensor units used by the GCS).

The values of the ARSP output variables are given
in Table 2 (KP in indicates that the first two element
values of the output are same). All the output values are
the same as expected. All the transitions, activities, and
states in the charts were activated precisely as expected.
All of the variables were updated as expected. The
expected values were calculated based on the given
equations in NL-base SRS. Therefore, the result of this
simulation show the previous Zed specification was
developed correctly.

We used simulation of the specification for
discovering hidden faults and their location. To
accomplish this, faults were injected into the model to
simulate a memory corruption (expected due to the harsh
space born lander mission environment.)

Four new issues arose during the fault injection
process. (1) Some correct inputs produced incorrect
outputs; (2) The Statecharts approach has a better
chance of predicting possible faults in the system.
(Because the Zed spec cannot provide a way of
predicting the transitions from state to state [Zed is not
executable]); (3) During the symbolic simulation, we

found some week points of the system where faults were
lurking; (4) Consequently, there are many designs
decisions to be made in the process of developing a
model (i.e., specification). Finding the correct
formulation is a process of refinement and validation,
which was facilitated using formal specification and
symbolic simulation. Some requirements were found to
be inconsistent/incomplete because they produced
incorrect results.

Based on the simulation results using fault injection
we discovered that the SRS was incomplete. To remedy
the situation we suggest that the AR_FREQUENCY
value be bounded to prevent the AR_ALTITUDE value
from exceeding its limit either one of the following
condition should be included:
1¯AR_FREQUENCY¯AR_COUNTER * 75000, or
AR_COUNTER = -1 v (0 ¯ AR_COUNTER ¯
AR_FREQUENCY/75000).
Without either one of the restrictions, the
AR_ALTITUDE output value exceeds its limit.

7. The Fault Coverage Analysis

Figure 4 gives an abstract SAN model of the ARSP.
There are only a few details about how the ARSP
computes the output. Instead, we use the SANs to model
fault coverage to evaluate the dependability of the entire
system[12].

The ARSP module can work in either of two modes:
normal or diagnostic mode. In normal mode, the ARSP
completes useful works. While in diagnostic mode, it
concentrates on detecting and covering errors. Therefore,
the ability to find and cover an error is stronger in
diagnostic mode than in normal mode. The current
working mode of the system is represented by a token in
either the place normal or the place diag. Activity n2d
represents the switching from normal working mode to
diagnostic mode, while d2n for switching back to normal
mode. Initially, the system is in normal mode,
represented by a token in normal. If there is an input,
represented by a token in place in, this input data could
be incorrect with probability pInputErr, or correct with
probability (1- pInputErr). If the input data were
incorrect, a token would be put in the place error. If the
input data are correct, the internal error might cause an
error to occur, and then a token would be put in the place
error. An error in the system is represented by the token
in the place error. If there is an error, the system will try
to detect and cover it. This system’s ability to cover an
error depends on the system mode. If the system failed to
cover the error, a token would be put in the place
out_wrong, which means that the system produced an
erroneous output. If no error occurs or the error is
covered, a token will be put in the place out_right.

 7

Figure 4 SAN model of ARSP

We used the Accumulated Reward Solver of
UltraSAN for two cases of analysis. We are interested in
how the various parameters will affect the probability of
output an error. In other words, what is the error
probability of ARSP with fault tolerance added? In the
first case, the input error probability varies from 0 to 0.2,
and the time that the system is working in diagnostic
mode takes 10% to 50% of the overall working time. The
probability that the system can detect an error in normal
mode is 0.6, i.e. pNDetect = 0.6. While in diagnostic
mode, this probability is 0.95, i.e. pDDectect = 0.95.
This result is illustrated in Figure 5.

We can see that the more time spent in diagnostic
mode the less the probability of producing an incorrect
output. However, the ARSP is a real time module. It has
to be responsive (perform timely) so that the whole
system can function properly. The time spent in
diagnostic mode should be limited. The output error
probability is greater than zero when the input error is
zero. This is exactly the case when the ARSP module
produces an incorrect output from a correct input. This
happens because we assume an internal fault/defect
exists in the system and the probabilities of failure
detection and coverage are less than 1.0. When the input
error probability is large, say 0.20, the probability of an
output error is much smaller (less than 0.1). Most input
errors are covered by the system. Therefore, it is
beneficial to use an error detection and coverage
mechanism in the system.

In the second case, the time spent by the system in
diagnostic mode is fixed to 30% of the overall time. We
also assume the input error probability is the same as in
the first case. We want to see how the ability of detecting
error influences the overall output error probability. The
result of this analysis is illustrated in Figure6. Obviously,
the higher the error detection ability, the lower the output
error probability. When the system has lower error
detection ability, for example pDDetect = 0.1, given an
input error probability of 0.2, the output error probability
is almost 0.14. However, if we increase the error
detection ability to a degree such that all errors can be

detected, the output error probability is much lower (less
than 0.08), given the same input error.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Pr
ob

ab
ili

ty
 o

f O
ut

pu
t E

rr
or

in_diag

Output Error vs Working mode

0.02

0.04

0.06

0.08

0.1 pInputErr = 0.00
pInputErr = 0.10
pInputErr = 0.20

Figure 5 Error Probability in different working mode

1 Pr
ob

ab
ili

ty
 o

f O
ut

pu
t E

rr
or

pDDetect

Output Error vs Detection ability

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pInputErr = 0.00
pInputErr = 0.10
pInputErr = 0.20

Figure 6 Error Probability with different detection ability

The above two cases tell us that the output error
probability decreases as the time spent in diagnostic
mode increases or the ability to detect errors increases.
As the input error probability increases, so do the output
errors. Case 1 also shows that the output errors decreases
significantly even when the system only spends 10% of
the time in diagnostic mode. Therefore, the overall
system dependability is increased if we use fault
tolerance techniques.

It needs to be mentioned that the results here are not
the actual output error probabilities of the real ARSP
module. The values of parameters used in those cases are
for experiment only. In the real ARSP module of the
GCS, input error probability should be very low and
could not reach 0.2. The error detection ability also
depends on the implementation and other factors of the
system. The available time spent in diagnostic mode
must be limited so that the system has enough time to
finish its useful work. More case studies can be
conducted to find out which parameters of the system are
more faults sensitive. More attentions should be given to
the sensitive parts when developing the system.

8. Summary and Conclusion

Even though the entire GCS specification was not
validated, the result of our partial analysis revealed that it
is beneficial to construct a complete and consistent
specification using this method (Zed-to-Statecharts). In

 8

the process, we uncovered some ambiguity issues
associated with how one would interpret the NL-based
specification

The outputs from the ARSP module were examined
and shown to be consistent with our expectations by
running simulations. All of the state activation/transition
paths were in the correct order as expected for all test
cases given by Table 1. Moreover, no nondeterministic
state transitions were detected for all simulation runs
(based on the conditions provided in Table 1). In this
context, the simulation has provided a means for
determining the consistency of the requirements.

The output values from the simulation (Table 2)
were checked and compared against the requirements
then found to be valid. After running simulations using
fault injection, we uncovered more issues confronting
that the SRS is incomplete. Through the whole process
of this study, we found that the SRS for the ARSP
module is consistent yet not complete nor fault-tolerant.
In other words, we assessed the consistency,
completeness, and fault-tolerance of the specification
that was derived from the NL-based SRS through Zed-
to-Statecharts transformation. Based on the simulation
results, we were able to determine better the implications
of the requirements to facilitate validation and
refinement with the goal of this study.

The fault coverage model revealed how the various
parameters of the system influence the output error
probability and, hence, the dependability of the overall
system. A way to make the ARSP more reliable and fault
tolerant was developed. An input error could be found by
comparing the computed altitude with the estimated
altitude. By running different implementations in parallel
and comparing their results, we can also detect as well as
correct some internal errors of the system.

Our study has shown that it is beneficial to use both
Zed and Statecharts combined with dependability
modeling to validate the software requirements. Using
these two RSLs provides a rigorous approach to
correctness checking while dependability analysis has
helped to evaluate alternate means of designing a robust
and fault tolerant system. Consequently, this approach
has successfully demonstrated how to avoid the problem
that results when incorrectly specified products force
corrective rework.

References

[1] Heitmeyer, C.L., Jeffords, R.D., and Labaw, B.G.,
Automated Consistency Checking of Requirements
Specifications. Trans. on Software Eng. and Methodology,
1996. Vol. 5. (3).
[2] Mission critical systems: Defense attempting to address
major software challanges, US General Accounting Officce,
1992.
[3] Meyer, J.F., Performability: A Retrospective and Some

Pointers to the Future. Performance Evaluation, 1992. Vol. 14.
(3-4).
[4] Sahner, R.T., K., and Puliafito, A., Performance and
Reliability Analysis of Computer Systems - An Example-Based
Approach Using the SHARPE Software Package. 1996, Boston,
MA: Kluwer Academic.
[5] He, X., PZ nets - a formal method integrating Petri nets
with Z. Information and Software Technology, 2001. Vol. 43.
[6] Bussow, R., Weber, M., A Steam-boiler Control
Specification with Statecharts and Z. LNCS, 1996. Vol. 1165.
[7] Grieskamp, W., Heisel, M., and Dorr, H., Specifying
Embedded Systems with Statecharts and Z: An Agenda for
Cyclic Software Components. LNCS 1382, 1998.
[8] Damm, W., Hungar, H., Kelb, P., and Schlor, R.,
Statecharts - Using Graphical Specification Languages and
Symbolic Model checking in the Verification of a Production
Cell. LNCS 891, 1995.
[9] Bussow, R., Geisler, R., and Klar, M., Specifying Safety-
Critical Embedded Systems with Statecharts and Z: A Case
Study. LNCS 1382, 1998.
[10] Hierons, R.M., Sadeghipour, S., Singh, H., Testing a
system specified using Statecharts and Z. Information and
Software Technology, 2001. Vol. 43. (Feb).
[11] Dugan, J.B., and Lyu, M.R. Dependability Modeling for
Fault-Tolerant Software and Systems. in Software Fault
Tolerance. 1995, John Wiley, New York, NY.
[12] Sanders, W.H. and L.M. Malhis, Dependability
Evaluation Using Composed SAN-Based Reward Models.
Journal of Parallel and Distributed Computing, no. 15, pp. 238-
254, 1992.
[13] Leveson, N., Safeware - system safety and computers.
1995: Addison Wesley.
[14] Heimdahl, M.P.E., Leveson, Nancy G., Completeness and
consistency in Hierarchical State-Based Requirements. IEEE
Trans on SE, 1996. Vol. 22. (N0.6, June 1996).
[15] Marciniak, J.J., Encyclopedia of Software Engineering.
1994: John Wiley and Sons.
[16] Mars Climate Orbiter Mishap Investigation Board Phase I
Report, 1999.
[17] Sommerville, I., Software Engineering. 6th ed. 2000,
Reading, MA: Addison-Wesley.
[18] Woodcock, J., and Davies, J., Using Z: Specification,
Refinement, and Proof. Series of Computer Science. 1996:
Prentice Hall International.
[19] Cha, S.D., and Hong H. S. Specification and Analysis of
Real-Time Systems in Statecharts. in The 2nd Intl. wksp. on OO
Real-Time Systems '96. 1996.
[20] Harel, D., and Politi, M., Modeling Reactive Systems with
Statecharts. 1998: McGraw-Hill.
[21] UltraSAN User's Manual: Version 3.0, Center for Reliable
and High-Performance Computing Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, 1995.
[22] Sheldon, F., and Kim, H. Y. Specification Validation of
Guidance Control Software Requirements for Reliability and
Fault-Tolerance. in Annual Reliability and Maintanability
Symposium. 2002, IEEE.
[23] Software Requirements - Guidance and Control Software
Development Specification Version 2.2 with formal mods 1-8
and 1-26., NASA, Langley Research Center, 1993.

